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ABSTRACT

Multiple linear regression theory provides an estimated co-~
variance structure for the estimates of the parameters of the
linear function based on given data. However, when the deviation
form is used to calculate these parameter estimates, the portions
of this matrix which involve the constant term are generally
missing. This report presents equations which can be used to
calculate these missing covariances from quantities which are
generally available.

Most standard regression references discuss calculation of
confidence limits for point estimates of the dependent variable
when these point estimates are calculated from the regression
equation. This report presents equations for similar limits for
the independent variables, again from quantities generally avail-
able when a deviation-form routine is used. A different inter-
pretation is suggested for these limits than is seen in the
references.

A numerical example is provided.

ADMINISTRATIVE INFORMATION
This report is a result of work performed under Program Element 60000N,
Task Area OMN, and Work Unit 1-1870-003.

1. INTRODUCTION

Multiple linear regression is a method of determining a linear
relationship between a dependent variable and a collection of independent
variables. The dependent variable is assumed to be equal to the sum of a
linear function of the independent variables and a random variable which
has zero mean and unknown variance. Multiple linear regression provides
the (least squares) best estimates of the parameters of the linear function
based on given data. In addition, it also can provide indications of how
well the calculated linear function fits the data, how much the parameter
estimates might vary from the '"true'" values, and how much point estimates
obtained by using the calculated regression equation might vary from the
"true'" values.

The calculations involved in determining the parameter estimates and

other quantities may be provided in either of two forms. The standard form

determines a constant term and a coefficient for each of the independent




variables. The deviation form replaces each data value for each variable

with its deviation from the sample mean (for that variable) and determines
only the coefficients. The constant term is readily calculated from the
means of the variables and the other parameter estimates. Other quantities,
Although also available by calculation, are generally ignored in a dis-
cussion of the deviation form. It is the purpose of this report to develop
expressions for these quantities.

Many books and papers have been written on multiple linear regression.
The reader is assumed to have been familiar at one time with the techniques
involved. However, sufficient review is given that this familiarity need
not be recent. Some of the better known facts will be stated without proof
in this report. For background the reader is referred to Acton,l* Draper
and Smith2 or Johnston.3 Johnston is the primary reference used by the
author.

Multiple linear regression theory provides an estimated covariance
structure for the parameter estimates. However, when the deviation form
is used to calculate these parameter estimates, the portions of this matrix
which involve the constant term are generally missing. This is the case,
for example, when the International Mathematical and Statistical Libraries
(IMSL) roucinesa RLSTEP and RLFORC are used in a stepwise multiple linear
regression application. This report derives equations which can be used to
calculate these missing covariances from quantities which are generally
available: the sum of the squared residuals, the means of the variables,
and the remainder of the estimated covariance matrix.

Most standard regression references discuss calculation of confidence
limits for point estimates of the dependent variable when these point
estimates are calculated from the regression equation. Some (for example,
Actonl) also discuss similar limits for similarly obtained point estimates
for the independent variables. However, these discussions generally are
restricted to cases in which there is a single independent variable. Also,
the deviation forms are not considered in this context. Equations are

derived in this report for calculation of such limits in cases in which

*A complete listing of references is given on page 29.
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there is more than one independent variable and the regression equation

has been calculated using the deviation form. In this report a different
interpretation is suggested for these limits than is seen in the references.

Section 2 reviews the assumptions involved in use of a multiple linear
regression procedure. The notation used throughout the report is also
introduced in this section.

Section 3 provides a basic review of multiple linear regression and
states the pertinent equations used in calculating the parameter estimates
and other quantities when the standard form is used.

Section 4 develops similar equations using the deviation form.
Equations are included for the complete estimated covariance matrix of the
parameter estimates. A familarity with some simple matrix operations is
necessary for a proper understanding of this section.

Section 5 specifies, step by step, the numerical procedures to be
followed in the application of multiple linear regression as described in
Section 4. In particular, the matrix equations of Section 4 are rewritten
in a nonmatrix form which can be used in a computer program. The limits
on predicted values of an independent variable are discussed in this
section.

A numerical example is provided in Section 6. This example follows
the step-by-step procedure given in Section 5. It is of sufficient
complexity to exemplify each step and yet of sufficient simplicity to
allow hand calculation.

A final section provides a summary.

2. ASSUMPTIONS AND NOTATION

Given a dependent variable Y and k ~ 1 independent variables Xz,

X3, vy Xk’ multiple linear regression assumes a model of the form

Y=bl+b2X2+b3x3+...+bkxk+u (1)




b b, are fixed constants and where u is a
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random variable with zero mean and constant, but unknown, variance w .

where the parameters b

Generally, Y must be a random variable since u is, but the independent
variables are assumed to be nonrandom. Note that it is not necessary at
this point to assume that the random errors u are normally distributed.

The assumed nonrandomness of the independent variables means that the
values of these variables have been measured accurately and are therefore
known exactly. Strictly speaking, randomness in the independent variables
(for example, inaccuracies in measuring and recording their values)
violates this assumption. However, this fact is usually ignored when re-
gression is applied, the prevailing feeling being that the (hopefully
small) randomness in the independent variables can be considered as a part
of the randomness in u. The robustness of the method often provides useful
results in such cases.

In general, column vectors are favored over row vectors in this report.
The transpose of a vector or matrix is indicated by a prime. For con-
venience, each vector will be introduced in terms of its transpose. Thus,
b, the vector of parameters, is introduced by b' = (bl’bz""’bk)'

The vector, all of whose components are zero, is denoted by 0. The
vector, all of whose components are one, is denoted by 1. When used, the
size of these vectors is clear from the context. Similarly, the dimension
of any identity matrix, I, is clear from its use.

The data are assumed to be arranged in k-tuples, called data points.

The igh data point is (X Yi)‘ where Y, is the iEh observed

% G LA T

value of the dependent variable and in is the igh observed value of the

j-E-tl independent variable. There are assumed to be n data points. The
values in each point are assumed to be associated according to Equation (1),

so that

Y, =b, + bZXZi - W bkxki + oy (2)

where uyg is some unknown value of the random variable u. In matrix form

Equation (2) may be written
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X =S ; ae % (4)

il in X3n e quJ

It is further assumed that no values are missing. That is, a data
point is not used in the regression unless all variables in it have values.
The sample mean of a variable is denoted by a bar above the variable

name. Thus,

n
Y = zYi /n = 1'Y/n
i=1
n
X, = X, ] /a
TPAY
i=1

The deviation of a variable from its sample mean is denoted by replacing

the upper case symbol by the corresponding lower case symbol:

s ks
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The sample variances, covariances, and correlations are easily expressed

in terms of these deviations. For example:

var(Xj)

il
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cov(Xj,Xh)
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corr (X ) = X . X .
OEE(E .y ijixhi Z 3 2 hi
i=1 i=1 i=1
For each j = 1, 2, ..., k, multiple linear regression finds an esti-

mate Bj for the value of the parameter bj in Equation (1). The result,

then, is the regression equation:

'.l Y = Bl + Bzx2 + 133x3 + oo * kak (5)

which can be used to arrive at an estimated value for any variable given

values for the others. (Caution: No guarantee has yet been given concern-

ing the accuracy of such estimates.) In particular, for i =1, 2, ..., n,
Y, - S T )
¥y m ey Botuy  Babyy By X1 (6)

is the estimated, or predicted, value of Y in the iEh data point. This

value can be compared to the actual value, Yi' The difference
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e, =Y ~'§l 673

is called the residual and represents whac must be added to the predicted
value to get the actual value. In matrix form the vector of residuals,

e = (el,ez,...en), is given by

SARed A - 1 (®)

Note from Equation (7) that e, is an estimate of the value of u, . This

fact is used in the next section to arrive at an estimate for wz.

The matrix Equations (3) and (8) provide a starting point for an
elegant development of the multiple iinear regression equations given
without proof in the next section. The interested reader is referred to
Johnston,3 Chapter 5.

In addition to the data matrix in standard form given in “quation (4),

the data matrix in deviation form:

X21 X3l o xkl
¥z Tgn sve  Fg
x=1. . R 9)
_in X3n 0e an-

will also be used.
In addition to the assumptions given earlier in this section, it is
necessary to assume that the random variable u is normally distributed in

order to derive confidence intervals. For other results, however, this
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assumption is not needed. On the other hand, it is always necessary to
assume independence of u, and uy for i not equal to h. Relaxation of many

of the assumptions stated here is considered in Johnston.

3. STANDARD REGRESSION EQUATIONS

In this section the standard multiple linear regression equations are
presented in matrix form. Since development of these equations is con-
tained in any good book on regression analysis, it is not repeated here.
Recall from the previous section that X is the data matrix in standard
form, Y is the vector of sample values of the dependent variable, g is the
vector of regression parameters, B is the vector of parameter estimates,
w2 is the variance of the random variable u (see Equation (1)), and e is
the vector of residuals. Also used in this section is the vector of
deviations of the value of the dependent variable about its mean:
Y= (yl,yz.---,yn)-

The objective of multiple linear regression is to determine the vector
B which will minimize e'e, the sum of the squared residuals. The vector B

which accomplishes this objective is given by
' = U
B= (X'X) XY (10)

The matrix X'X is a square symmetric matrix called the information matrix.
Note that each Bj is a linear combination of the random variables
YI’YZ"'°’Yn' (The elements of X were assumed to be nonrandom.) From the

assumptions imposed upon u, it is determined that

E(B) = b (11)

var() = w2 (x'x)"} (12)

So B is an unbiased estimator of E (that is, Bj is an unbiased esti-

mator of b, for each j =1, 2, ..., k). The Gauss-Markov Theorem on least

b
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squares indicates that B is the best linear unbiased estimator of b. Al-
though Equation (12) gives the covariance structure of B, w2 is unknown and
var(B) cannot actually be determined. However, with the choice of B given
in Equation (10), the expected value of the sum of the squared residuals

is given by

E(e'e) = (n—k)w2 (3.3)

Thus, w2 can be approximated

WP 2 v = (e'e)/ (n-k) (14)

From the approximation of Equation (12), an estimated covariance matrix

for B is found to be

var(8) = v = (e'e) X' (n-k) (15)

The coefficient of multiple correlation, RZ, often used as a measure
of the goodness of fit of the regression equation to the given data, is
calculated from

RZ =1 - (e'e)/(y'y) (16)

The regression equation, Equation (5), can be used to determine a
predicted value for the dependent variable given values for the independent
variables. On the assumption that u (and therefore Y and B) is normally
distributed, confidence limits may be placed around this prediction. For
example, suppose that it is desired to determine such confidence limits for
Y when Xj =Z, for § =2, 3, ..., k. For Z' = (1,22,2 .,Zk), Y is

i
normally distributed and

300

EY) = 2'b (17)




var(E®) = wiz' x'%) "'z (18)
’ ~ 2 o s o
: var(Y) = w (1 + 2' (X'X) Z) (19)
L However, e'e has a chi-squared distribution with n-k degrees of freedom

and is independent of g'g. The confidence limits are found, by shifting

in the usual way to a Student's t distribution, to be, for E(Y),

2'B + wyz' x'0 7'z (20)

and, for ?,

Z'B & tv‘/l + g'(x'X)'lg (21)

where t is a critical point from a t distribution with n-k degrees of
freedom. If r is the desired significance level, then t is the (1 - r/2)
critical point. (For example, for 90 percent confidence limits the sig-
nificance level is r = 0.1, and t would be found in the 0.95 column of the
table of t distribution points.)

The regression equation can also be used to calculate a predicted
value for one of the independent variables given values for the dependent
variable and each of the other independent variables. Limits similar to
confidence limits, can also be calculated in this case. These limits will

be discussed in Section 5.

4. REGRESSION EQUATIONS IN DEVIATION FORM
In this section the deviation form equivalents for Equations (10),
(12), (15), (17), (18), (19), (20), and (21) are presented. As noted in
the introduction, the deviation form equivalent of Equation (15) does not
contain the portion of the estimated covariance matrix o. the parameter
estimates which deals with the constant term. Equations for these co-

variances are derived in this section.

10

A




First, consider the structure of X'X and x'x. From Equation (4), the

definition of X, note that

n nX'
X'X = (22)

2,)_(3,...,Xk) and S is the (k-1)x(k-1) matrix having at the

intersection of its (s-l)Eh row and its (t-l)Eh column the element

where g = (X

n

Ss—l,t-—l i szixti 530

i=1

From Equation (9), the definition of x, it is seen that the element at

the intersection of the (s-l)EE-row and the (t—l)Eb-column is given by

n
' =
o szixti
i=1

n
= .S- xsixti - nXSXt (24)
i=1

From a comparison of Equations (23) and (24), the matrix form for

Equation (24) is found to be
x'x = S - nXx' (25)

The relationship between the inverses of X'X and x'x is clarified by

an examination of the matrix

11
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1/n Q'

U
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Then,

Q(X'X) = (27)

Inversion of Equation (27) shows that

1 Rt
&yt - % (28)
0 (x'x)

When both sides of this last equation are multiplied on the right by Q as

defined in Equation (26),
v ' 1= T (] -1
1/n + X'(x'x) X -X'(x"'x)
@t - o i (29)
-(x'x) X (x'x)

Consideration is next given to the form of X'Y and x'y. If X. is the
submatrix of X found by eliminating the first column of X (consisting of

all ones), it is found that
x'y = X.'Y - n¥X (30)

This is the matrix equivalent of

n n

z x54Yy = z X ¥, = oX.¥ (31)
i=1 i=1
12
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It is also found that

'Y = (32)
The deviation form equivalent of Equation (10) is

B. = (x'x)_lx'z (33)

From Equations (10), (29), (30), (32), and (33), it is determined that

Y + ﬁ?g'(x'x)_lg - g'(x'x)_lx.'z
§ =
—n?(x'x)-lg + (x'x)-lx.'g
¥-X'B
= (34)
B.
That is, B. is the subvector of B found by eliminating Bl' Furthermore,
Bl may also be found from Equation (34):
B, =Y - X'B. (35)

Note that Equations (15) and (29) yield the estimated covariance matrix

for B in terms of x'x and the sample means:

wz(x'x)-l

var(B.)

(e'e) (x'x) "/ (n-k) (36)




i

cov(§.,Bl) -wzg'(x'x)—l

~(e')X' (x'x) Y/ (k) 37

var(Bl) = wz(l/n + g'(x'x)-lg)

(e'e)(1/n + X' (x'x) %)/ (n-k) (38)

Finally, consideration is given to estimation in the deviation context.
Since all the elements of B may be calculated from Equations (33) and (35),
point estimates may be calculated from the regression equation,

Equation (5), or from the deviation form of Equation (5), which is:

y = Bzx2 + B3x3 + ... + kak (39)

As in the preceding section, suppose that confidence limits for Y are

. = A L
desired when Xj Zj’ for j 2 35 ey ke _}f Z. (22,23,...,Zk) and

z' =2l « X' = (zz,...,zk), where zj = Zj - Xj, for each j, then

E'(x'x)-lg = Z.'(x'x)-lg. - g.'(x'x)-lg

- X'(x'%) Tz + X' (x'0X (40)
Thus, Equation (29) implies that
' rgy L ' tet ik
Z'(X'X) "Z2=1/n+2"'(x'x) "z (41)

When this result is used in Equations (18) through (21), the deviation

equivalents are:

var(E3)) = w2 (1/n + 2' (x'x)"12) 42)
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var(y) = WP [(a+l) /n + g'(x'X)-lgl (43)
z'B. % tv }/l/n + g'(x'x)_lg (44)
z2'B. £ tv'/(n+l)/n + E'(x’x)_lg (45)

where Equations (44) and (45) are confidence limits for E(?) and 37,
respectively. As in Section 3, v is as given in Equation (14) and t is a
critical point from a t distribution with n-k degrees of freedom. The
confidence limits for‘?'may be obtained from Equation (45) by adding the

mean Y to the limits for 5. Equivalent to Equation (17) is
E(Y) = z'b. (46)

where b.' = (b2’b3""’bk)'
In the next section some of the matrix equations of this section are

put into a form more amenable to numerical calculation.

5. NUMERICAL PROCEDURES
Suppose a set of n data points is available for performance of a
multiple linear regression. This section sets forth the steps of the
numerical procedure to be used in accomplishing this regression and
determining the other information discussed in earlier sections. The
deviation form equations of the preceding section are used here.
The first step is to develop the matrix x'x and the vector x'y. This

may be accomplished with a single pass through the data by accumulating




n
(c) Z Byt
i=1

n
(d) 2 inYi
i=1

for each j,m =2, 3, ..., k. The means ij and Y are found by dividing (a)
and (b), respectively, by n. These means are then used with (c) to de-
termine the elements of x'x from Equation (24), and with (d) to determine

the elements of x'y from

i=1
n
Y — —-—
= 2 X .Y, = nxX Y 47)
si i s
i=1
n
So that R2 may be calculated from Equation (16), z Yzi should also be
accumulated and used to determine X'Z from e
n
2 =2
' = -
y'y 2 Y] - nY (48)
i=1

Since the means will be required later, they should be retained. Dorn and

McCracken5 indicate in Sections 3.5 and 7.8 that this single pass method




may not be as accurate numerically as a two-pass method in which (a) and

(b) are accumulated on the first pass and the sums (over i) of x,.x .,
2 ji"mi
X, n n .
Jiyi’ and y;© the second pass
The second step is to invert x'x. Most modern computers have
reasonably accurate matrix inversion routines available. For convenience

the element of (x'x)_l at the intersection of row s and column t will be

denoted by cs+l,t+1' That is,
BY e el
92 S33 " “m,
Gl Tl oa e e (49)
| k2 k3 Kk |

The third step is to determine the estimates of the regression

parameters. For j = 2, 3, ..., k, these estimates are calculated (see
Equation (33)) from

k n
Bj = 2 cjm z x Y1 (50)
m=2 i=1

The value of B, may then be calculated (see Equation (35)) from

k
B1 = Y = 2 Bij (Si)
3=2

1




The regression equation, Equation (5), is now known and can be used to

arrive at a point estimate for Y, given values X2 = 22, X3 = 23,
o3 Xk = Zk for the independent variables. It can also be used to arrive
at a point estimate for independent variable Xm given Y = Y' and, for

3 =2, 3, cos, ek, mbLy L0 el Xj = Zj from

k'l‘[l
3 - '— —
X Y B, EBij /Bm (52)
i =2

m
where :E: refers to the sum exclusive of the mEb term.

The next step is to calculate R2 from Equation (16). Equations (5)
and (7) may be used and a pass may be made through the data to calculate
the residual associated with each data point. The sum of the squared
residuals can then be accumulated and used in Equation (16) to calculate
R2. An alternative procedure, which does not necessitate calculation of
the individual residuals, is based on the fact (see Johnston,3

Equation (5.22)) that

gle=g 3~ Bny
k n
= ' -
3y Z Bj 2 5174 (53)
j=2 i=1
This leads to
k n
2. o E ; E '
R™ = Bj xjiyi /y'y (54)
j=2 i=1
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In addition, Equation (53) can be used in Equation (14) to provide the

following estimate of wz, the variance of the dependent variable:

o T
w =V
k n ]
=|yy - E B, E X54Y3 [ (n-k) (55)
j=2 i=1

The fifth step is to calculate the estimated covariance structure of
the parameter estimates from Equations (36), (37), and (38). From

Equation (38) the estimated variance of B1 is seen to be

k k
el P
var(Bl) = vy 1/n + 2 2 cstxsxt (56)

s=2 t=2

For j = 2, 3, ..., k, Equation (37) indicates that

k

& 2 X

cov(Bj,Bl) = -v S cjsxs (57)
s=2

Finally, for j,m = 2, 3, ..., k, Equation (36) yields

« 2

cov(Bj,Bm) = v ij (58)
For any given set of values, X2 = ZZ’ X3 = Z3, npp Xk = Zk,

confidence limits at various levels of significance can be calculated for

the dependent variable using Equation (45). For 100(l-r) percent

confidence limits use




o s e

k k
+ tv, [(n+1)/n + E E e (2 - (2 R ) (59)

s=2 t=2

where t is the (1 - r/2) critical point from a t distribution with n-k
degrees of freedom. Note that the point estimate of the dependent variable
given by Equation (5) is midway between these limits and that the length of
the interval bounded by these limits is 2t times the square root of the
estimated variance of the point estimate (see Equation (43)).

Converting Equation (59) to a probability statement produces a method
of calculating limits, similar to confidence limits, for the predicted
value of an independent variable, given values for the dependent variable
and each of the other independent variabtles. Since the independent
variables are not random (see Section 2), these limits are not truly
confidence limits. However, they do have a potentially useful inter-
pretation as a specification of the range of values for the independent
variable for which a particular value lies within a confidence interval for
the dependent variable.

Suppose that values have been specified for X 5

27 X3, n=1°
xm+1’ ol vy Xk as above. Suppose further that it is desired to find the
values of Xm for which Y = Y' will lie in a 100(1-r) percent confidence

interval for (the random variable) Y. For each value Zm of Xm,

k
prbdlr-8 =~ Vugp|s
&L e ] ]
i=2

k k
tve f(n+l)/n + z zcst(zs-is)(zt-it)
=2  t=2




If the inequality within the braces in Equation (60) is solved for the
unknown Zm with Y = Y', the values of Xm for which Y = Y' lies in a
100(1-r) percent confidence interval for Y may be determined.

The result of such an algebraic procedure is

5 <
+ =
me gZm +h=0 (61)
where
f = B2 -~ tzvzc (62)
m mm
k m
2 2 2 E Y =
g 2t v ij(Zj Xj) cmme
=2
k m
- ' — —_
ZBm Y B1 z Bij (63)
§=2
2
k m
h={Y" - B, - E B.Z, - t2v2 (nt+l)/n
1 kT
3=z

Kn kp
+ 2 2 cst(ZS—XS) (Zt-xt)
s=2 t=2

kK m

= z y = =2
- 2X_ cmj(zj-xj) + cmmxm (64)
J=2
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The zeros of the function on the left side of Equation (61) can be

determined using the quadratic formula. If this function has no real
zeros, Y = Y' lies in the confidence interval for all values of Xm
(provided Xl = Zl’ Y Xm—l = Zm—l’ xm+l = Zm+l’ AN Xk = Zk)' Otherwise,
the zeros may be denoted by Zu and Ze, Zu being the larger of the two
values. Then Equation (61) may be used to determine the values of Xm for
which Y = Y' lies in the confidence interval. These values are all those
between Ze and Zu, B i; from Equation (52) is between Ze and Zu’ and all
values less than or equal to Ze or larger than or equal to Zu otherwise.
It should be remembered that the last few paragraphs depend on the
assumption that the random variable u (and therefore the dependent
variable) has a normal distribution, as well as the other assumptions
stated in Section 2. Such normality assumptions imply normality of the
residuals. If the residual is calculated for each data point, a standard

normality test will indicate how valid such an assumption may be.

6. A NUMERICAL EXAMPLE

The example discussed in this section is discussed in some detail by
Draper and Smith,2 although they do not cover some of the details con-
sidered here. The development presented here follows the steps of the
preceding section.

The data consists of n = 13 data points, each point consisting of a
value of a dependent variable, Y, and each of two independent variables,
X, and X,. The data are listed in Table 1. Note, for example, that

2 3
X =11, X = 55, and Y7 = 102.7.

2,4

3,6




TABLE 1 - DATA FOR NUMERICAL EXAMPLE

el B0 8 .
1 26 | 78.5
2 1 28 | 7.3
3 11 | s6 | 104.3
- 4 1wl | e7.6
5 7| s2 | 95.9
6 11 | 55 | 109.2
7 71 | 102.7
8 1]l m | s
9 o | s4 | 93.1
10 21 | 47 | 115.9
11 1| 40 | 83.8
12 11§ 66 | 11383
| 13 10| 68 | 109.4




Step 1:

13
E y % E S R
X,; =97 X, = 7.461538 X,; = 1139
i=1

13 13
= = 2=
Z Xy, = 626 X, = 48.153846 E X,] = 33050
i=1 i=1
13
E Y, = 1240.5 Y = 95.423077
i=1
13 13
E 7 & E Y
X, Xy, = 4922 Y; = 121088.09
i=1 i=1
13 13
E X..Y. = 10032 E X,.Y. = 62027.8
24 4 5 s
i=1 i=1

415.230769 251.076923
x'x =
251.076923 2905.692310
775.961538
X'y =

2292.953850

y'y = 2715.7631




¥ - v <
- - > i el . ——

0.002541066 - 0.0002195701
Step 2: i) L
- 0.0002195701 0.0003631248
| Step 3: B, = 1.468306
i By = 0.6622505
B, = 52.57735

The regression equation is

: Y = 52.57735 + 1.468306 X, + 0.6622505 X

2 3
Step 4: e'e = 57.9045
r R = 0.9786784
W &y = 5,790450
Step 5: var(Bl) = 5.226595
cov(Bl,Bz) = -0.04856520
i cov(Bl,B3) = ~0.09176431
{ var(Bz) = 0.01471392
i cov(Bz,B3) = ~0,.001271410
var(B3) = 0,002102656
Step 6: Confidence limits for Y when Xz = 6 and X3 = 50 are

94.49971 + 2.506258 t

The point estimate for Y is 94.49971, and t is from a Student's t distri-
bution with ten degrees of freedom. For example, the 95 percent confidence
interval (r = 0.05; t = 2.228 from the 97.5 percent column of a t-
distribution table) is

25




W

(88.91577,100.0837)

Step 7: Finally, with Y' = 120, when X3 = 50,
£ = 2.155922 - 0.01471392 t2
g = - 100.7555 + 0.2242714 t2
h = 1177.185 - 7.097254 tZ

The resulting limits for different significance levels are given in the

last two columns of Table 2. Since the point estimate of X, is 23.36715,

2

TABLE 2 - LIMITS FOR X, IN NUMERICAL EXAMPLE

2
r t Ze Zu
0.001 4.587 15.06735 36.94749
0.01 3.169 17.39803 31.65355
0.05 2.228 19.03294 28.80569
0.10 1.812 19.78620 27.66996
0.20 1.372 20.60728 26.53686
0.50 0.700 21.91731 24.92266
Y' = 120 lies within the indicated confidence interval for Y so long as X

2
is between Ze and Zu' For example, Y' = 120 lies within a 95 percent

confidence interval for Y so long as X, is between 19.03294 and 28.80569.

2

Similarly, with Y' = 120, when X2 = 6,
£ = 0.4385757 ~ 0.002102684 t°
g = - 77.63273 + 0.1987855 t2
h = 3435.462 - 10.96396 t2
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The resulting limits at different significance levels are given in

Table 3. The point estimate of X, is 88.50550. Hence, Y' = 120 lies

3
TABLE 3 - LIMITS FOR X3 IN NUMERICAL EXAMPLE
r E Ze Zu
0.001 4.587 69.75458 116.50926
0.01 3.169 75.06417 106.11853
0.05 2.228 78.78176 100. 23987
0.10 1.812 80.48814 97.84187
0.20 1.372 82.34159 95.42050
0.50 0.700 85.28138 91.92384

within the confidence interval for Y so long as X

indicated in Table 3.

is between Z and Z as
3 e u

7. SUMMARY

Standard references on multiple linear regression give explicit
formulas for determination of the regression parameters, the estimated
covariance structure of these parameter estimates, and interval estimates
for the dependent variable (about a value predicted from the regression
equation), given values for the independent variables. When the regression
is performed in deviation from, the constant term must be calculated from
an equation which is generally given in such references. However, formulas
for calculation of the portions of the covariance matrix associated with
the constant term are generally missing. Such formulas are derived in
this report.

In addition, formulas are derived for limits, similar to confidence
limits, on the value of an independent variable, given values for the
dependent variable and each of the other independent variables. The proper
interpretation of such limits is also given.

The formulas developed here have been utilized in a pair of computer

programs, one a batch program and the other an interactive program. Both




programs use the IMSL routines to perform a stepwise multiple linear
A future report will discuss the IMSL routines used and the

regression,

programs themselves.

e L
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